Abstract

We study the hydrodynamics of superconductors within the framework of Schwinger-Keldysh effective field theory (EFT). We show that in the vicinity of the superconducting phase transition the most general leading-order EFT satisfying the local Kubo-Martin-Schwinger condition is described by a version of the time-dependent Ginzburg-Landau (TDGL) equations augmented with stochastic terms. This version of TDGL is applicable in the gapless regime independent of any microscopic details. Within this approach, it is possible to include systematically the effects of nonuniform temperature and heat conductivity, as well as explicit or spontaneous breaking of time reversal. We also introduce a thermal version of the Josephson relation and use it to construct an exotic hydrodynamics describing a phase of matter where heat can flow without dissipation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.