Abstract

The mechanical response of single-wall carbon nanotubes to radial compression is investigated via atomic force microscopy (AFM). We find that the force F applied by an AFM tip (with radius R) onto a nanotube (with diameter d), rescaled through the quantity Fd;{3/2}(2R);{-1/2}, falls into a universal curve as a function of the compressive strain. Such universality is reproduced analytically in a model where the graphene bending modulus is the only fitting parameter. The application of this model to the radial Young's modulus E_{r} leads to a further universal-type behavior which explains the large variations of nanotube E_{r} reported in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.