Abstract

This Letter discusses topological quantum computation with gapped boundaries of two-dimensional topological phases. Systematic methods are presented to encode quantum information topologically using gapped boundaries, and to perform topologically protected operations on this encoding. In particular, we introduce a new and general computational primitive of topological charge measurement and present a symmetry-protected implementation of this primitive. Throughout the Letter, a concrete physical example, the Z_{3} toric code [D(Z_{3})], is discussed. For this example, we have a qutrit encoding and an abstract universal gate set. Physically, gapped boundaries of D(Z_{3}) can be realized in bilayer fractional quantum Hall 1/3 systems. If a practical implementation is found for the required topological charge measurement, these boundaries will give rise to a direct physical realization of a universal quantum computer based on a purely Abelian topological phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.