Abstract

The Hilbert manifold ∑ ∞ consisting of positive invertible (unitized) Hilbert-Schmidt operators has a rich structure and geometry. The geometry of unitary orbits Ω⊂∑ ∞ is studied from the topological and metric viewpoints: we seek for conditions that ensure the existence of a smooth local structure for the set Ω, and we study the convexity of this set for the geodesic structures that arise when we give ∑ ∞ different Riemannian metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.