Abstract

Debonding of rigid inclusions embedded in the elastic–plastic aluminum alloy Al 2090-T3 is analyzed numerically using a unit cell model taking full account of finite strains. The cell is subjected to overall biaxial plane strain tension and periodical boundary conditions are applied to represent arbitrary orientations of plastic anisotropy. Plastic anisotropy is considered using two phenomenological anisotropic yield criteria, namely Hill [Proceedings of the Royal Society of London A 193 (1948) 281] and Barlat et al. [International Journal of Plasticity 7 (1991) 693]. For this material plastic anisotropy delays debonding compared to plastic isotropy except for the case of Hill’s yield function when the tensile directions coincided with the principal axes of anisotropy. For some inclinations of the principal axes of anisotropy relative to the tensile directions, the stress strain responses are identical but the deformation modes are mirror images of each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.