Abstract

Guided tissue regeneration focuses on the implantation of a scaffold architecture, which acts as a conduit for stimulated tissue growth. Successful scaffolds must fulfill three basic requirements: provide architecture conducive to cell attachment, support adequate fluid perfusion, and provide mechanical stability during healing and degradation. The first two of these concerns have been addressed successfully with standard scaffold fabrication techniques. In instances where load bearing implants are required, such as in treatment of the spine and long bones, application of these normal design criteria is not always feasible. The scaffold may support tissue invasion and fluid perfusion but with insufficient mechanical stability, likely collapsing after implantation as a result of the contradictory nature of the design factors involved. Addressing mechanical stability of a resorbable implant requires specific control over the scaffold design. With design and manufacturing advancements, such as rapid prototyping and other fabrication methods, research has shifted towards the optimization of scaffolds with both global mechanical properties matching native tissue, and micro-structural dimensions tailored to a site-specific defect. While previous research has demonstrated the ability to create architectures of repetitious microstructures and characterize them, the ideal implant is one that would readily be assembled in series or parallel, each location corresponding to specific mechanical and perfusion properties. The goal of this study was to design a library of implantable micro-structures (unit blocks) which may be combined piecewise, and seamlessly integrated, according to their mechanical function. Once a library of micro-structures is created, a material may be selected through interpolation to obtain the desired mechanical properties and porosity. Our study incorporated a linear, isotropic, finite element analysis on a series of various micro-structures to determine their material properties over a wide range of porosities. Furthermore, an analysis of the stress profile throughout the unit blocks was conducted to investigate the effect of the spatial distribution of the building material. Computer Aided Design (CAD) and Finite Element Analysis (FEA) hybridized with manufacturing techniques such as Solid Freeform Fabrication (SFF), is hypothesized to allow for virtual design, characterization, and production of scaffolds optimized for tissue replacement. This procedure will allow a tissue engineering approach to focus solely on the role of architectural selection by combining symmetric scaffold micro-structures in an anti-symmetric or anisotropic manner as needed. The methodology is discussed in the sphere of bone regeneration, and examples of cataloged shapes are presented. Similar principles may apply for other organs as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.