Abstract
AbstractWe prove a result of uniqueness of the entropy weak solution to the Cauchy problem for a class of nonlinear hyperbolic systems of conservation laws that includes in particular the p‐system of isentropic gas dynamics. Our result concerns weak solutions satisfying the, as we call it, Wave Entropy Condition, or WEC for short, introduced in this paper. The main feature of this condition is that it concerns both shock waves and rarefaction waves present in a solution. For the proof of uniqueness, we derive an existence result (respectively a uniqueness result) for the backward (respectively forward) adjoint problem associated with the nonlinear system. Our method also applies to obtain results of existence or uniqueness for some linear hyperbolic systems with discontinuous coefficients. © 1993 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.