Abstract

We consider Boolean models in $d$-dimensional Euclidean space. Each point of a stationary, ergodic point process is the center of a ball with random radius. In this way, the space is partitioned into an occupied and a vacant region. We are interested in the number of unbounded occupied or vacant components that can coexist. We show that under very general conditions on the distribution of the radius random variable, there can be at most one unbounded component of each type. In case the point process is Poisson, we obtain uniqueness of the unbounded components without imposing any condition at all. Although we do not prove the necessity of the conditions to prove uniqueness, we obtain examples of stationary, ergodic point processes where the unbounded components are not unique when the conditions are violated. Finally, we discuss more general random shapes than just balls which are centered at the points of the point process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.