Abstract

Two-dimensional (2D) materials remain highly interesting for assembling three-dimensional (3D) structures, amongst others, in the form of macroscopic hydrogels. Herein, we present a novel approach for inducing chemical inter-sheet crosslinks via an ethylenediamine mediated reaction between Ti3C2Tx and graphene oxide in order to obtain a reduced graphene oxide-MXene (rGO-MXene) hydrogel. The composite hydrogels are hydrophilic with a stiffness of ~20 kPa. They also possess a unique inter-connected porous architecture, which led to a hitherto unprecedented ability of human cells across three different types, epithelial adenocarcinoma, neuroblastoma and fibroblasts, to form inter-connected three-dimensional networks. The attachments of the cells to the rGO-MXene hydrogels were superior to those of the sole rGO-control gels. This phenomenon stems from the strong affinity of cellular protrusions (neurites, lamellipodia and filopodia) to grow and connect along architectural network paths within the rGO-MXene hydrogel, which could lead to advanced control over macroscopic formations of cellular networks for technologically relevant bioengineering applications, including tissue engineering and personalized diagnostic networks-on-chip. Statement of SignificanceConventional hydrogels are made of interconnected polymeric fibres. Unlike conventional case, we used hydrothermal and chemical approach to form interconnected porous hydrogels made of two-dimensional flakes from graphene oxide and metal carbide from a new family of MXenes (Ti3C2Tx). This way, we formed three-dimensional porous hydrogels with unique porous architecture of well-suited chemical surfaces and stiffness. Cells from three different types cultured on these scaffolds formed extended three-dimensional networks – a feature of extended cellular proliferation and pre-requisite for formation of organoids. Considering the studied 2D materials typically constitute materials exhibiting enhanced supercapacitor performances, our study points towards better understanding of design of tissue engineering materials for the future bioengineering fields including personalized diagnostic networks-on-chip, such as artificial heart actuators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.