Abstract

Unipolar charging of narrowly distributed 30–100 nm DEHS aerosols in air is investigated, in order to determine the influence of the external electric field (E 0 ≤ 5 kV/cm) and high charging intensities (n·t ≤ 5 · 10 14 s/m 3 ) on the charging efficiency. The results are compared with a combined diffusion and field charging model based on the limiting-sphere concept described in Part I. The experiments were carried out in a wire corona charger under conditions of complete radial turbulent mixing, which makes the determination of charging history straightforward and very accurate. The state of mixing was verified on the basis of the Deutsch model, by separate measurements of particle losses. For positive charging, the agreement between measured and predicted mean charge was generally better than 5% for particles larger than 45 nm, which typically carried more than 4 unit charges; for 30 nm particles and relatively low charge levels the uncertainties in the model lead to deviations up to 30%. In case of neg...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.