Abstract
The unimolecular metastable decompositions of dimethoxymethane (CH(2)(OCH(3))(2), 1) and 1,1-dimethoxyethane (CH(3)CH(OCH(3))(2), 2) upon electron impact have been investigated by means of mass-analyzed ion kinetic energy (MIKE) spectrometry, collision-induced dissociation (CID) spectrometry and D-labeling techniques. Both molecular ions are formed at extremely low abundance. Sequential transfers of a methyl group and a hydrogen atom to an ether oxygen are observed during the decomposition of [M - H](+) ions from 1 and 2. The [M - H](+) ion from 2 also decomposes into the m/z 43 ion by the loss of dimethyl ether. Almost complete hydrogen exchange is observed prior to the loss of CH(4) from the m/z 45 ion ([M - OCH(3)](+)) of 1. The m/z 59 ions ([M - OCH(3)](+)) of 2 decompose competitively into the m/z 31 and 29 ions by the losses of C(2)H(4) and CH(2)O, respectively. The former loss occurs via two different fragmentation pathways. The relative abundances of the ions in the MIKE spectra increase with decreases in the total heat of formation (Sigma DeltaH(f)) of the ion plus the neutral fragment. Copyright 2000 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.