Abstract
Hoare and He's theory of reactive processes provides a unifying foundation for the formal semantics of concurrent and reactive languages. Though highly applicable, their theory is limited to models that can express event histories as discrete sequences. In this paper, we show how their theory can be generalised by using an abstract trace algebra. We show how the algebra, notably, allows us to consider continuous-time traces and thereby facilitate models of hybrid systems. We then use this algebra to reconstruct the theory of reactive processes in our generic setting, and prove characteristic laws for sequential and parallel processes, all of which have been mechanically verified in the Isabelle/HOL proof assistant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.