Abstract
This paper proposes a notion of entity enhancing, which unifies entity resolution and conflict resolution, to identify tuples that refer to the same real-world entity and at the same time, correct semantic inconsistencies. We propose to unify rule-based and machine learning (ML) methods for entity enhancing, by embedding ML classifiers as predicates in logic rules. We model entity enhancing by extending the chase. We show that the chase warrants correctness justification and the Church-Rosser property. Moreover, we settle fundamental problems associated with entity enhancing, including the enhancing, consistency, satisfiability, and implication problems, ranging from NP-complete and coNP-complete to Π 2 -complete. Taken together, these provide a new theoretical framework for unifying entity resolution and conflict resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.