Abstract

The paper deals with the numerical approximation of the HUM control of the 2D wave equation. Most of the discrete models obtained with classical finite difference or finite element methods do not produce convergent sequences of discrete controls, as the mesh size h and the time step Δt go to zero. We introduce a family of fully-discrete schemes, nondispersive, stable under the condition \(\Delta t\leq h\slash\sqrt{2}\) and uniformly controllable with respect to h and Δt. These implicit schemes differ from the usual explicit one (obtained with leapfrog time approximation and five point spatial approximations) by the addition of terms proportional to h2 and Δt2. Numerical experiments for nonsmooth initial conditions on the unit square using a conjugate gradient algorithm indicate the excellent performance of the schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.