Abstract

Let $(T(t))_{t\geq 0}$ be a strongly continuous $C_0$-semigroup of bounded linear operators on a~Banach space $X$ such that $\lim_{t\to\infty}||T(t)/t||=0$. Characterizations of when $(T(t))_{t\geq 0}$ is uniformly mean ergodic, i.e., of when its Cesaro means $r^{-1}\int_0^r T(s)ds$ converge in operator norm as $r\to\infty$, are known. For instance, this is so if and only if the infinitesimal generator $A$ has closed range in $X$ if and only if $\lim_{\lambda\downarrow 0^+}\lambda R(\lambda, A)$ exists in the operator norm topology (where $R(\lambda,A)$ is the resolvent operator of $A$ at $\lambda$). These characterizations, and others, are shown to remain valid in the class of quojection Frechet spaces, which includes all Banach spaces, countable products of Banach spaces, and many more. It is shown that the extension fails to hold for all Frechet spaces. Applications of the results to concrete examples of $C_0$-semigroups in particular Frechet function and sequence spaces are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.