Abstract
Assume that the unit spheres of Banach spaces X and Y are uniformly homeomorphic. Then we prove that all unit spheres of the Lebesgue–Bochner function spaces Lp(μ,X) and Lq(μ, Y) are mutually uniformly homeomorphic where 1 ≤ p, q < ∞. As its application, we show that if a Banach space X has Property H introduced by Kasparov and Yu, then the space Lp(μ,X), 1 ≤ p < ∞, also has Property H.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.