Abstract

The relationship between Boolean proof nets of multiplicative linear logic ( APN) and Boolean circuits has been studied [Ter04] in a non-uniform setting. We refine this results by taking care of uniformity: the relationship can be expressed in term of the (Turing) polynomial hierarchy. We give a proofs-as-programs correspondence between proof nets and deterministic as well as non-deterministic Boolean circuits with a uniform depth-preserving simulation of each other. The Boolean proof nets class m&BN(poly) is built on multiplicative and additive linear logic with a polynomial amount of additive connectives as the non-deterministic circuit class NNC(poly) is with non-deterministic variables. We obtain uniform-APN= NCand m& BN(poly) = NNC(poly)=NP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.