Abstract

We prove that if a domain $D \subset {{\mathbf {R}}^n}$ is quasiconformally equivalent to a uniform domain, then $D$ is an extension domain for the Sobolev class $W_n^1$ if and only if $D$ is locally uniform. We provide examples which suggest that this result is best possible. We exhibit a list of equivalent conditions for domains quasiconformally equivalent to uniform domains, one of which characterizes the quasiconformal homeomorphisms between uniform and locally uniform domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.