Abstract

In this paper, two unified alternating direction implicit (ADI) methods, based on the combination of fourth-order compact difference for the approximations of the second spatial derivatives with approximation factorization of difference operators, are presented for solving a two-dimensional (2D) and three-dimensional (3D) nonlinear viscous and nonviscous wave equations, respectively. By the discrete energy method, it is shown that their solutions converge to exact solutions with an order of two in time and four in space in L2- and H1-norms. Finally, numerical findings testify the computational efficiency of the algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.