Abstract
Conditional Autoregressive Value-at-Risk and Conditional Autoregressive Expectile have become two popular approaches for direct measurement of market risk. Since their introduction several improvements both in the Bayesian and in the classical framework have been proposed to better account for asymmetry and local non-linearity. Here we propose a unified Bayesian Conditional Autoregressive Risk Measures approach by using the Skew Exponential Power distribution. Further, we extend the proposed models using a semiparametric P-Spline approximation answering for a flexible way to consider the presence of non-linearity. To make the statistical inference we adapt the MCMC algorithm proposed in Bernardi et al. (2018) to our case. The effectiveness of the whole approach is demonstrated using real data on daily return of five stock market indices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.