Abstract
In 2003, Wheeler, Sharma, and Buisson presented an elastoplastic constitutive model for unsaturated soils that represents both the mechanical behaviour and water retention behaviour, including the coupling between them. A crucial feature of the model is that the occurrence of plastic compression during all types of stress path is unified as a single process, with plastic compression during loading, plastic compression during wetting (collapse compression), and plastic compression during drying (irreversible shrinkage) all represented by yielding on a single loading–collapse yield curve. This paper explains how the model is able to predict the possible occurrence of plastic compression during each type of stress path and, in each case, links this to a physical explanation of the process involved. A simulation of an experimental test demonstrates the capability of the model to accurately predict the variation of both the void ratio and degree of saturation during successive stages of drying, loading, and wetting, where large magnitudes of compression occurred in all three test stages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.