Abstract

The extended Euler deconvolution algorithm is shown to be a generalization and unification of 2‐D Euler deconvolution and Werner deconvolution. After recasting the extended Euler algorithm in a way that suggests a natural generalization to three dimensions, we show that the 3‐D extension can be realized using generalized Hilbert transforms. The resulting algorithm is both a generalization of extended Euler deconvolution to three dimensions and a 3‐D extension of Werner deconvolution. At a practical level, the new algorithm helps stabilize the Euler algorithm by providing at each point three equations rather than one. We illustrate the algorithm by explicit calculation for the potential of a vertical magnetic dipole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.