Abstract

Unidirectional K+ fluxes were estimated in isolated rat thymocytes by 42K exchange kinetics. The cells were either preloaded with isotope and the release of it measured during incubation for one hour at 38 degrees C, or the cellular uptake of isotope during a similar incubation was measured. The influx rate of untreated thymocytes was: 2.3-10(-12) moles cm-2-s-1 and efflux rate: 1.8-10(-12) moles cm-2-s-1. When con A was added to the cells, influx was raised 74% and efflux 65%. Maximal effect was obtained when the concentration of con A was 15 mug/ml, but concentrations as low as 0.75 mug/ml were effective. Hydrocortisone resistant thymocytes responded at least was well as untreated cells to con A, which also raised RNA synthesis rate in the former cells 2.5 times. Using an extracellular marker, 51CrEDTA, intracellular concentrations of some ions was estimated in the thymocytes after one hour incubation: Na+: 30 mmoles/kg water, K+: 177 mmoles/kg water and Cl-:43 mmoles/kg water. Cellular water content: 69%. These values were not found significantly altered when con A was present. Since con A raised influx and efflux to the same extent and no net flux of K+ could be detected, it is proposed that both active and passive transport of K+ was increased by con A. The increased fluxes induced by con A, can apparently not be reversed by removal of con A from the incubation medium or by addition of the inhibiting hapten, alpha-methyl-D-mannoside.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.