Abstract

A self-adaptive differential evolution neutron spectrum unfolding algorithm (SDENUA) is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer (WMNS). Specifically, the neutron fluence bounds are estimated to accelerate the algorithm convergence, and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10–6 to avoid unnecessary calculations. Furthermore, the crossover probability and scaling factor are self-adaptively controlled. FLUKA Monte Carlo is used to simulate the readings of the WMNS under (1) a spectrum of Cf-252 and (2) its spectrum after being moderated, (3) a spectrum used for boron neutron capture therapy, and (4) a reactor spectrum. Subsequently, the measured neutron counts are unfolded using the SDENUA. The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA, which does not require complex parameter tuning or an a priori default spectrum. The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1, and the errors of the final results calculated using the SDENUA are less than 12%. The established SDENUA can be used to unfold spectra from the WMNS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.