Abstract

The reactions of two 3-(2-allylanilino)-3-phenylacrylate esters with acetic anhydride and with strong acids has revealed a richly diverse reactivity providing a number of unexpected products. Thus, acetylation of ethyl 3-(2-allylanilino)-3-phenylacrylate, (Ia), or ethyl 3-(2-allyl-4-methylanilino)-3-phenylacrylate, (Ib), with acetic anhydride yields not only the expected acetylated esters, (II), as the major products but also the unexpected polysubstituted quinolines 3-acetyl-8-allyl-2-phenylquinolin-4-yl acetate, (IIIa), and 3-acetyl-8-allyl-6-methyl-2-phenylquinolin-4-yl acetate, (IIIb), as minor products. Subsequent reaction of the major product ethyl 2-[(2-allyl-4-methylanilino)(phenyl)methylidene]-3-oxobutanoate, (IIb), with concentrated sulfuric acid did not provide the expected 3-acetylquinoline derivative, but instead two unexpected products, namely ethyl 4-ethyl-2-phenyl-1,4-dihydroquinoline-3-carboxylate, (IV), and ethyl 3-acetyl-4-ethyl-2-phenyl-3,4-dihydroquinoline-3-carboxylate, (V), in yields of 39 and 22%, respectively. The reaction of (Ib) with Eaton's reagent gave both the quinoline (Z)-6-methyl-2-phenyl-8-(prop-1-en-1-yl)quinolin-4(1H)-one, (VI), and the unexpected tricyclic product (2RS)-2,8-dimethyl-4-phenyl-1,2-dihydro-6H-pyrrolo[3,2,1-ij]quinolin-6-one, (VII), in yields of 71 and 12%, respectively. The products (II)-(VII) have all been fully characterized spectroscopically and the crystal structures of two of the unexpected products, i.e. (IIIb) (C23H21NO3) and (VII) (C19H17NO), are reported here. The formation of compounds (IV), (V) and (VII) all require an isomerization of the initial allyl substituent, with migration of the C=C double bond from the terminal site to the internal site. In (IIIb), the two acetyl substituents are oriented such that the intramolecular distance between the two carbonyl O atoms is only 3.243 (2) Å, and in (VII), the five-membered ring adopts a twisted half-chair conformation. The molecules of compound (IIIb) are linked by two independent hydrogen bonds to form sheets built from R4(3)(20) rings and the sheets are linked by a π-π stacking interaction to form a three-dimensional framework structure. The molecules of compound (VII) are linked by a single type of C-H...O hydrogen bond to form centrosymmetric R2(2)(14) dimers. The molecules of compound (V), which crystallizes with Z' = 2, are linked by two N-H...O and two C-H...O hydrogen bonds, forming a chain of rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.