Abstract

In the tetraazamacrocyclic ligand N,N'-dimethyl-2,11-diaza-[3.3](2,6)pyridinophane (L-N4 Me2 ), the two pyridine units are separated from each other by sp3 -hybridized triatomic bridges. Such electronically isolated pyridine moieties are considerably less prone to reductions than di- or triimines. A detailed structural, magnetic, and spectroscopic investigation of the complexes [Cr(L-N4 Me2 )(OAc)2 ] and [Cr(L-N4 Me2 )(OAc)2 ](PF6 ), in combination with theoretical calculations, reveals that the reduced complex must be described as a chromium(III) ion coordinated to the anionic radical ligand (L-N4 Me2 )⋅- rather than a low-spin chromium(II) ion bound to closed-shell ligands. Thus, it is, to the best of our knowledge, only the second example of a stable and structurally characterized metal complex containing a reduced isolated pyridine unit. The stability is attributed to the delocalization of the unpaired electron across the two pyridine units, mediated by their interaction to the metal ion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.