Abstract
The incorporation of higher-order modes (HOMs) can substantially augment the antenna gain and bandwidth, but this improvement is typically accompanied by compromised radiation performance including radiation nulls and higher side lobe levels. In this study, an inventive strategy is introduced to reduce the radiation nulls and the side lobe levels of a single antenna element by positioning multiple slots of the radiating element at unequal spacing. Dual hybrid HOMs are analyzed inside a substrate integrated waveguide-based cavity to design a wide band, enhanced gain dual-polarized antenna. The radiating element of the antenna is designed with multiple slots positioned at unequal spacing but symmetrical along the origin. This methodology provides three-fold advantages: a reduction of side lobes, an adjustment of phase center, and a significant reduction of radiation nulls. The antenna has been fabricated, and experimentally validated. The antenna exhibits a reduction in radiation null to − 0.5 dB, a phase adjustment of the main lobe to 0°, and a reduction in side lobe level from − 14.4 dB (N = 2, equal spacing) and − 15.5 dB (N = 4, equal spacing) a maximum of − 19.7 dB (N = 4, unequal spacing) at 12.35 GHz in the phi-0 plane. Excellent agreement between measured and simulated results corroborates the efficacy of the proposed approach. The significant improvement in the radiation performance of the single-element antenna design sets the antenna design apart from the state-of-the-art solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.