Abstract

Additive manufactured (AM) materials exhibit enhanced performance, while post-processing is essential to reinforce its properties. Controlling the tunable factors and the underlying strengthening mechanisms during the post-processing are a key to answering the calls from the industry and end users. We identified the principal strengthening factors that contribute to AM stainless steel under heat-treatment and weighed their importance. The as-built sample exhibited a unique microstructure with a heterogeneous grain size distribution, a small amount of retained austenite, high dislocation density, and dispersed oxide particles. The strengthening primarily by dislocation forest and additionally by heterogeneous grain size contributed to the as-built sample. Although aging slightly decreased dislocation strengthening, superior aging enhancement was achieved by Cu-precipitates. The solid-solutionizing not only increased the effective grain size but also reduced the dislocation density by eliminating the heterogeneous microstructure, which deteriorated the precipitation hardenability. Our findings shed light on the performance optimization of AM metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.