Abstract

We develop a method to fabricate an undoped Ge quantum well (QW) under a 32 nm relaxed Si0.2Ge0.8 shallow barrier. The bottom barrier contains Si0.2Ge0.8 (650 °C) and Si0.1Ge0.9 (800 °C) such that variation of Ge content forms a sharp interface that can suppress the threading dislocation density (TDD) penetrating into the undoped Ge quantum well. The SiGe barrier introduces enough in-plane parallel strain (ε∥ strain -0.41%) in the Ge quantum well. The heterostructure field-effect transistors with a shallow buried channel obtain an ultrahigh two-dimensional hole gas (2DHG) mobility over 2 × 106 cm2/(V s) and a very low percolation density of (5.689 ± 0.062) × 1010 cm-2. The fractional indication is also observed at high density and high magnetic fields. This strained germanium as a noise mitigation material provides a platform for integration of quantum computation with a long coherence time and fast all-electrical manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.