Abstract
Purpose – The authors aim to investigate the observability properties of the process of simultaneous localization and mapping of an autonomous underwater vehicle (AUV), a challenging and important problem in marine robotics, and illustrate the derived results through computer simulations and experimental results with a real AUV. Design/methodology/approach – The authors address the single/multiple beacon observability analysis of the process of simultaneous localization and mapping of an AUV by deriving the nonlinear mathematical model that describes the process; then applying a suitable coordinate transformation, and subsequently a time-scaling transformation to obtain a linear time varying (LTV) system. The AUV considered is equipped with a set of inertial sensors, a depth sensor, and an acoustic ranging device that provides relative range measurements to a set of stationary beacons. The location of the beacons does not need to be necessarily known and in that case, the authors are also interested to localize them. Numerical tests and experimental results illustrate the derived theoretical results. Findings – The authors show that if either the position of one of the beacons or the initial position of the AUV is known, then the system is at least locally weakly observable, in the sense that the set of indistinguishable states from a given initial configuration contains a finite set of isolated points. The simulations and experiments results illustrate the findings. Originality/value – In the single and multiple beacon case and for manoeuvres with constant linear and angular velocities both expressed in the body-frame, known as trimming or steady-state trajectories, the authors derive conditions under which it is possible to infer the state of the resulting system (and in particular the position of the AUV). The authors also describe the implementation of an advanced continuous time constrained minimum energy observer combined with multiple model techniques. Numerical tests and experimental results illustrate the derived theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.