Abstract

Underwater image enhancement has received much attention in underwater vision research. However, raw underwater images easily suffer from color distortion, underexposure, and fuzz caused by the underwater scene. To address the above-mentioned problems, we propose a new multiscale dense generative adversarial network (GAN) for enhancing underwater images. The residual multiscale dense block is presented in the generator, where the multiscale, dense concatenation, and residual learning can boost the performance, render more details, and utilize previous features, respectively. And the discriminator employs computationally light spectral normalization to stabilize the training of the discriminator. Meanwhile, nonsaturating GAN loss function combining $L_1$ loss and gradient loss is presented to focus on image features of ground truth. Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method, which outperforms nondeep and deep learning methods in both qualitative and quantitative evaluations. Furthermore, we perform an ablation study to show the contributions of each component and carry out application tests to further demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.