Abstract
This paper addresses the challenge of significant interference caused by direct sunlight, which adversely affects the orientation accuracy of underwater imaging polarization sensors (IPS). A novel underwater polarization orientation method is proposed based on direct sunlight compensation. Firstly, based on the polarization transmission model at the water-air interface, the interference mechanism of the underwater direct sunlight polarization detection model was analyzed. The underwater IPS detection model based on direct sunlight compensation is constructed, which uses the weight coefficient of underwater direct sunlight to compensate for the interference on the polarization channel and improve the accuracy of underwater polarization detection models. Furthermore, the analytical solution method for the polarization state information of underwater IPS is proposed, employing the augmented Stokes vectors to construct a linear equation for solving the weight coefficients of direct sunlight and improving the computational efficiency. Finally, an underwater polarization orientation experimental platform is established, and both simulation and actual underwater experiments are conducted. Compared with the traditional methods, the proposed method reduces heading error by an average of 92.53% at different solar altitudes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.