Abstract

Models for underwater acoustic propagation typically assume that the sea surface is smooth or rough but frozen in time. Long-duration transmissions on the order of tens of seconds are being considered for next-generation SONAR. These types of signals improve target resolution and tracking. However, they can interact with the sea surface at many different wave displacements during transmission. This violates the "frozen" boundary assumption and causes additional transmission losses and Doppler effects on the received signal. Full-wave propagation models can be used to better understand the mechanisms behind these phenomena. This understanding leads to better system design without having to perform expensive at-sea experiments. In this paper, a finite-difference time-domain (FDTD) method is implemented to model the impact of roughness and motion on the sea surface. The FDTD method is a full-wave numeric technique that allows an arbitrary function to define the boundary points. Surface motion is accomplished by modifying these boundary points at each time step. A variable subgrid sea surface boundary technique is developed to improve the accuracy of these FDTD simulations. The rough, time-evolving sea surface is modeled using a Pierson-Moskowitz frequency spectrum, which is simple to implement and fully defined by wind speed and direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.