Abstract

This density functional theory study explores the detailed mechanism of nickel-catalyzed hydroalkylation of the C═C bond of N-Cbz-protected enamines (Cbz = benzyloxycarbonyl) with alkyl iodides to give chiral α-alkyl amines. The active catalyst (biOx)NiH, a chiral bioxazoline (biOx)-chelated Ni(I) hydride, exhibits chemoselectivity that favors single electron transfer to the alkyl iodide over C═C hydrometalation with the enamine. This generates an alkyl radical and a Ni(II) intermediate, which takes up the enamine substrate CbzNHCH═CH2CH3 via a regio- and enantioselective C═C insertion into the NiII-H bond. The resulting Ni(II) alkyl complex combines with the alkyl radical, forming a Ni(III) intermediate, from which the alkyl-alkyl reductive elimination delivers the chiral amine product. The regioselectivity arises from a combination of orbital and noncovalent interactions, both of which are induced by the Cbz group. Thus, Cbz plays an additional role in controlling regioselectivity. The enantioselectivity stems from the differing distortion energies of CbzNHCH═CH2CH3. The reductive elimination is the rate-determining step (ΔG⧧ = 18.7 kcal/mol). In addition, the calculations show a noninnocent behavior of the biOx ligand induced by the insertion of CbzNHCH═CH2CH3 into the Ni-H bond of (biOx)NiH. These computationally gained insights can have implications for developing new Ni(I)-catalyzed reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.