Abstract

Thermal oxidation (TO) process was employed to generate a gradient titanium oxide ceramic layer for improving corrosion performance and service safety of Ti6Al4V alloy. The semiconductor characteristic of the TO layer was evaluated in CO2-saturated simulated oilfield brine. The generated TO layer with a thickness of about 20 μm was dense and continuous without cracks or spalling characteristics. The TO layer mainly comprised of an oxide ceramic layer (rutile TiO2 ceramic phase, minor anatase one, and Al2O3) and an oxygen diffusion layer. The conducted electrochemical analysis suggested that the corrosion resistance of Ti6Al4V alloy was improved using TO surface strengthening process. It was demonstrated that the TO layer with semiconductor characteristics showed a transition from n-type (donor) to p-type (acceptor) with the increasing applied electric potential. The electron work function of the TO layer was higher than that of Ti6Al4V alloy with a naturally formed passive film. The improvement in corrosion properties was attributed to the excellent chemical stability and semiconductor properties of the metal oxide ceramic phases (TiO2, Al2O3) in the TO layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.