Abstract

BackgroundSleep bruxism (SB) is a common sleep disorder that affects approximately 20% of children and 10% of adults. It may cause orodental problems, such as tooth wear, jaw pain, and temporal headaches. However, the pathophysiological mechanisms underlying SB remain largely unknown, and a definitive treatment has not yet been established. HighlightHuman studies involving polysomnography have shown that rhythmic masticatory muscle activity (RMMA) is more frequent in otherwise healthy individuals with SB than in normal individuals. RMMA occurs during light non-rapid eye movement (non-REM) sleep in association with transient arousals and cyclic sleep processes. To further elucidate the neurophysiological mechanisms of SB, jaw motor activities have been investigated in naturally sleeping animals. These animals exhibit various contractions of masticatory muscles, including episodes of rhythmic and repetitive masticatory muscle bursts that occurred during non-REM sleep in association with cortical and cardiac activation, similar to those found in humans. Electrical microstimulation of corticobulbar tracts may also induce rhythmic masticatory muscle contractions during non-REM sleep, suggesting that the masticatory motor system is activated during non-REM sleep by excitatory inputs to the masticatory central pattern generator. ConclusionThis review article summarizes the pathophysiology of SB based on the findings from human and animal studies. Physiological factors contributing to RMMA in SB have been identified in human studies and may also be present in animal models. Further research is required to integrate the findings between human and animal studies to better understand the mechanisms underlying SB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call