Abstract

AbstractThe efficient use of softwood in biorefineries requires harsh pretreatment conditions to overcome biomass recalcitrance. Following harsh pretreatments, the hemicellulose is solubilized. Here, we studied the material characteristics of Norway spruce following steam pretreatment at six different severities, relating chemical and structural information to the enzymatic hydrolyzability. Steam pretreatment conditions were defined by two different temperatures (180 °C and 210 °C), with and without the addition of various acids (CH3COOH, H3PO4, H2SO4, SO2). Structural knowledge of the streams is a cornerstone for developing an efficient saccharification process.This study combines advanced structural characterizations to gain fundamental understanding of the influence of severity of pretreatment on spruce. Structural knowledge is a cornerstone in developing an effective saccharification process by modulating pretreatment conditions and enzymes employed.Overall structural properties were assessed by scanning electron microscopy. The effect of stream pretreatment severity on lignin and lignin-carbohydrate bonds was investigated by two-dimensional heteronuclear single quantum correlation nuclear magnetic resonance. Finally, cellulose ultrastructure was studied by applying small/wide-angle X-ray scattering. The structural characteristics of the six pretreated softwood substrates were related to the enzymatic hydrolyzability.With increasing pretreatment severity, surface defibrillation, and lignin depolymeryzation were observed. Further, lignin-carbohydrate complexes signals were detected. Cellulose analysis revealed the rearrangement of microfibrils leading to the formation of larger microfibril aggregates. This microfibril rearrangement likely contributed to the observed increase in enzymatic hydrolysis yields as better enzyme accessibility resulted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.