Abstract
A kinetic and mechanistic study of chloride substitution by thiourea nucleophiles, namely thiourea, N-methylthiourea, N,N-dimethylthiourea and N,N,N′,N′-tetramethylthiourea in the complexes chlorobis-(2-pyridylmethyl)amineplatinum(II) (Pt1), chloro N-(2-pyridinylmethyl)-8-quinolinamineplatinum(II) (Pt2), chloro N-(2-pyridinylmethylene)-8-quinolinamineplatinum(II) (Pt3) and chlorobis(8-quinolinyl)amineplatinum(II) (Pt4) was undertaken under pseudo-first-order conditions using UV–visible spectrophotometry. The study showed that lability of the chloro leaving group is dependent on the strength of π-interactions between the filled dπ-orbitals of the metal and the empty π*-orbitals of the chelating ligand in the following manner: Pt1 > Pt3 > Pt2 > Pt4. Introduction of the quinoline moiety within the non-labile chelated framework of the Pt(II) complexes results in a more electron-rich metal centre which retards the approach of the nucleophile through repulsion. Moreover, the net σ-effect of the ligand moiety plays a significant role in controlling the reactivity of the complexes. The experimental results are interpreted with the aid of computational data obtained by density functional theory (B3LYP(CPCM)/LANL2DZp//B3LYP/-LANL2DZp) calculations. The mode of substitution remains associative as supported by negative entropies and the dependence of the second-order rate constants on the concentration of entering nucleophiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.