Abstract
Cobalt (Co) is widely used in Fischer-Tropsch synthesis (FTS), converting synthesis gas, carbon monoxide + hydrogen (CO + H2), to long-chain hydrocarbons. The adsorption of CO on the Co surface is the key step in FTS. In this work, the effect of CO adsorption sites on the reactions between CO and H2 was investigated by using density functional theory (DFT). The energetics and structures of the reactions between the adsorbed CO (CO*) and H2/adsorbed H2 (H2*)/adsorbed H atom (H*) were calculated. The results show that the reaction between CO* and H2 is initiated by the molecular adsorption of H2 on the Co surface. The reactions between CO* and H2*/H* are influenced by CO adsorption sites. For the reaction system of CO* + H2*, it has the lowest reaction barrier when CO is adsorbed at the hcp site, while for CO* + H*, it has the lowest reaction barrier when CO is adsorbed on the top site. Kinetic analysis indicates that to improve the reactivity of CO + H2 in FTS, the adsorption of CO should be controlled to favour the top and bridge sites. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.