Abstract

Quasi-2D halide perovskites have emerged as some of the most promising photovoltaic materials owing to their excellent stability, yet the device power conversion efficiency is far from satisfactory. Besides crystal orientation-related carrier transport, defects in absorbers also play a crucial role in device performance, which has received limited attention in the 2D perovskite field. Herein, we systematically profile the defect states in 2D perovskite film by the temperature-dependent admittance spectroscopy (AS), light intensity-dependent VOC, space-charge-limited-circuit (SCLC), and photoluminescence measurements. It is revealed that the quasi-2D perovskite films suffer from severe defects as compared to the 3D counterparts in terms of both trap energy levels and trap densities. Consequently, the level of nonradiative recombination of photogenerated carriers is much greater in the corresponding devices, wherein the monomolecular recombination is dominant. These findings substantially contribute to a deeper understanding of the nature of 2D perovskite materials, which promotes the further development of 2D perovskite solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.