Abstract

Salt hydrate-based phase-change materials are considered promising for future heat storage applications in residential heating/cooling systems. Smooth phase transition from the liquid to solid phase and vice versa is essential for effective heat exchanger; however, supercooling in salt hydrates delays the onset of liquid–solid phase transition. We investigate the molecular level mechanism of supercooling in sodium sulfate decahydrate (SSD). SSD is a complex salt hydrate whose properties are governed by electrostatic forces that include pure Coulombic interactions as well as hydrogen bonds. Experimentally, we examine the importance of a nucleator in reducing supercooling temperatures. We investigated the effect of various mass concentrations of a borax nucleator on a decrease of supercooling temperatures. Molecular dynamics simulation techniques are used to obtain a basic understanding of supercooling in SSD. We observe that by introducing borax as a nucleator, there is a decrease in the supercooling temperature before nucleation. Our molecular dynamics simulations show that long-range electrostatics between sodium and sulfate ion pairs and that with polar water molecules is responsible for delayed nucleation in SSD that results in supercooling, and also, dynamics of charged molecules slows down. The lack of crystallization leads to amorphous structures in supercooled SSD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.