Abstract

Knowledge of the geographical distribution of soils is indispensable for policy and decision makers to achieve the goal of increasing agricultural production and reduce poverty, particularly in the Global South. A study was conducted to better understand the soilscapes of the Giba catchment (900–3300 m a.s.l.; 5133 km2) in northern Ethiopia, so as to sustain soil use and management. To characterise the chemical and physical properties of the different benchmark soils and to classify them in line with the World Reference Base of Soil Resources, 141 soil profile pits and 1381 soil augerings at representative sites were analysed. The dominant soil units identified are Leptosol and bare rock (19% coverage), Vertic Cambisol (14%), Regosol and Cambisol (10%), Skeletic/Leptic Cambisol and Regosol (9%), Rendzic Leptosol (7%), Calcaric/Calcic Vertisol (6%), Chromic Luvisol (6%) and Chromic/Pellic Vertisol (5%). Together these eight soil units cover almost 75% of the catchment. Topography and parent material are the major influencing factors that explain the soil distribution. Besides these two factors, land cover that is strongly impacted by human activities, may not be overlooked. Our soil suitability study shows that currently, after thousands of years of agricultural land use, a new dynamic equilibrium has come into existence in the soilscape, in which ca. 40% of the catchment is very suitable, and 25% is moderately suitable for agricultural production. In view of such large suitable areas, the Giba catchment has a good agricultural potential if soil erosion rates can be controlled, soil fertility (particularly nitrogen) increased, available water optimally used, and henceforth crop yields increased.

Highlights

  • Good land management is characterised by making optimal use of the natural resources including soils in a sustainable way

  • In the Giba catchment (5133 km2), north Ethiopia, poverty has been largely attributed to insufficient crop production [1, 2]

  • Despite these soil and water conservation measures (SWCM), soil erosion still is an important problem, which results in low crop yields and biomass production

Read more

Summary

Introduction

Good land management is characterised by making optimal use of the natural resources including soils in a sustainable way. Ex-situ SWCM include the construction of stone bunds, infiltration trenches, check dams in gullies, micro-dams and ponds as well as a range of biological measures (e.g. exclosures), while in-situ soil management measures are being promoted (e.g. intercropping, bed and furrows, zero tillage, zero grazing) [3, 7,8,9,10,11]. Despite these SWCM, soil erosion still is an important problem, which results in low crop yields and biomass production. Soil maps have proven to be powerful tools for understanding soil processes [12], for the establishment of technical infrastructure [13], and in support of land management policies [14, 15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.