Abstract

According to the India Energy Security Scenario 2047, the number of residential air conditioner (A/C) units may increase seven-fold by 2037 as compared to 2017. Also, the related energy consumption might increase four times in the next two decades, according to India’s National Cooling Action Plan. Therefore, the study of occupant cooling behaviour is essential to reduce and manage the significant electricity demand, helping to formulate and implement climate-specific cooling policies, and to adopt low-energy and low-cost technologies at mass-market scale. The study aims to analyse residential electricity consumption in order to investigate occupant behaviour, especially for thermal comfort by using space cooling and mechanical ventilation technologies. Among the five climate zones in India, this study focuses on the occupant behaviour in a warm-humid climate using Auroville as a case study, where climate analysis of the past 30 years demonstrated progression towards unprecedented warmer weather in the last five years. In this study, electricity consumption data from 18 households (flats) were monitored for seven months (November 2018–June 2019). The study also elaborated the limitations faced while monitoring and proposed a data filling methodology to create a complete daily profile for analysing occupant behaviour through electricity consumption. The results of the data-driven approach demonstrated the characteristics and complexities in occupant behaviour and insight on the operation of different technologies to attain thermal comfort in residential buildings in an increasingly warming climate.

Highlights

  • The second-most populous country of the world, India (1.35 billion in 2018) [1] is expected to have the largest population in the world by 2030 [2]

  • Among the five climate zones in India, this study focuses on the occupant cooling behaviour in a warm-humid climate—using Auroville as a case study—where summer and wintertime temperature can be 25 ◦ C–35 ◦ C and 20 ◦ C–30 ◦ C, respectively, with relative humidity 70–90%

  • The electricity demand would be discussed to analyse cooling behaviour in selected, monitored households

Read more

Summary

Introduction

The second-most populous country of the world, India (1.35 billion in 2018) [1] is expected to have the largest population in the world by 2030 [2]. According to the 2011 census data, India’s population was 1.2 billion, and the number of households was 246 million [3]. Under the 2011 average household size (4.9) assumption, there will be 307 million households in 2030. Another study showed that there could be as many as 386 million households in India [4]. In addition to the population growth, India’s GDP growth—7.3% in 2018 and forecasted to be 7.5% from 2019–2022 [1]—is one of the highest in the world.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.