Abstract
Overcoming the sluggish reaction kinetics of the oxygen evolution reaction (OER) is a determining factor for the practical application of photocatalysts for overall water splitting. Two-dimensional covalent organic frameworks (2D-COFs) offer an ideal platform for catalyst design in the field of overall water splitting for their exceptional chemical tunability and high efficiency of light capture. In this work, four β-ketoamine 2D-COFs, consisting of 1,3,5-triformylphloroglucinol (Tp) groups and different linkers with pyridine segments, were constructed and optimized. By means of first-principles calculations, the band structures, free energy changes of photocatalytic hydrogen evolution reaction (HER) and OER, and charge density distributions were calculated and investigated systemically to discuss the visible-light response, overall water splitting activities on active sites, and the characteristic of charge transfer and separation. The protonated pyridine N derived from the double-H2O closed-ring H-bond adsorption model could efficiently induce N-C sites' synergistic effect between pyridine N and its ortho-position C to minimize the OER energy barrier and to enhance the charge transfer and separation. A N-C site synergistic mechanism has been proposed to provide a comprehensive explanation for the experimental results and a new strategy to design novel 2D-COF photocatalysts for overall water splitting.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.