Abstract

Ion pumps continue to be a staple in ultra-high vacuum (UHV) applications. Since their adoption as a primary UHV pump in the 1960's, it has been known that a variety of particles can emanate from within the ion pump and cause undesirable effects on current measurements and optics components. Historically the solution has been baffling and shielding which results in longer conductance paths to the ion pump. Those solutions can work, but require a larger pump and more vacuum plumbing to compensate for conductance losses. The first step was to fully understand the nature of the particles and their charges. Once those were characterized options for emissions reduction were evaluated. It was determined that an efficient design of shielding near the source of the particle generation site was the most cost effective solution. With a slight modification to the chamber of a small ion pump, internal shielding was developed that reduced the emissions by a factor of up to 1000 times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.