Abstract

New technologies such as differential global positioning systems (DGPS) and geographical information systems (GIS) are making it possible to manage variability in soil properties and the microenvironment within a field. By providing information about where variability occurs and the patterns that exist in crop and soil properties, DGPS and GIS technologies have the potential of improving crop management practices. Yield monitoring systems linked to DGPS receivers are available for several types of horticultural crops and can be used in variety selection and/or improving crop management. Precision soil sampling and remote sensing technologies can be used to scout for infestations of insects, diseases, or weeds, to determine the distribution of soil nutrients, and to monitor produce quality by measuring crop vigor. Combined with variable rate application systems, precision soil sampling and remote sensing can help direct fertilizer, herbicide, pesticide, and/or fungicide applications to only those regions of the field that require soil amendments or are above threshold levels. This could result in less chemical use and improved crop performance. As with any information driven system, the data must be accurate, inexpensive to collect, and, most importantly, must become part of a decision process that results in improvements in crop yield, productivity, and/or environmental stewardship.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.