Abstract
In this chapter, we analyze donor behavior based on the general segmentation bases. In particular, we study the behavior of the individual donor group's support for higher education. There has been very little research to date that discriminates the donor behavior of individual donors on the bases of their donation levels. The existing literature is limited to a general treatment of donor behavior using one of the available classical statistical discriminant techniques. We investigate the individual donor behavior using both classical statistical techniques and a mathematical programming formulation. The study entails classifying individual donors based on their donation levels, a response variable. We use individuals’ income levels, savings, and age as predictor variables. For this study, we use the characteristics of a real dataset to simulate multiple datasets of donors and their characteristics. The results of a simulation experiment show that the weighted linear programming model consistently outperforms standard statistical approaches in attaining lower APparent Error Rates (APERs) for 100 replications in each of the three correlation cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.