Abstract

Reductions in hygroscopicity, increased dimensional stability and decay resistance of heat-treated wood depend on decomposition of a large portion of the hemicelluloses in the wood cell wall. In theory, these hemicelluloses are converted to small organic molecules, water and volatile furan-type intermediates that can polymerize in the cell wall. Reductions in hygroscopicity and improved dimensional stability of acetylated wood depend on esterification of the accessible hemicelluloses in the cell wall reducing hydrogen bonding with water and bulking the cell wall back to its green volume. Stability is not 100% since the water molecule is smaller than the acetyl group so water can access hydroxyl sites even when the wood is fully acetylated. The cell-wall moisture content is too low in acetylated wood to support fungal attack so the initial enzymic attack starting the colonization does not take place. Strength properties are reduced in heat-treated wood owing to the degradation of the cell-wall matrix resulting from the hemicellulose loss. Strength properties are not significantly changed in acetylated wood and acetylation results in greatly improved wet strength and wet stiffness properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.