Abstract

Recently, compressive sensing (CS) has emerged as a powerful tool for solving a class of inverse/underdetermined problems in computer vision and image processing. In this paper, we investigate the application of CS paradigms on single image super-resolution (SR) problems that are considered to be the most challenging in this class. In light of recent promising results, we propose novel tools for analyzing sparse representation-based inverse problems using redundant dictionary basis. Further, we provide novel results establishing tighter correspondence between SR and CS. As such, we gain insights into questions concerning regularizing the solution to the underdetermined problem, such as follows. 1) Is sparsity prior alone sufficient? 2) What is a good dictionary? 3) What is the practical implication of noncompliance with theoretical CS hypothesis? Unlike in other underdetermined problems that assume random down-projections, the low-resolution image formation model employed in CS-based SR is a deterministic down-projection that may not necessarily satisfy some critical assumptions of CS. We further investigate the impact of such projections in concern to the above questions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.