Abstract
This paper uses big data technologies to study base stations' behaviors and activities and their predictability in mobile cellular networks. With new technologies quickly appearing, current cellular networks have become more larger, more heterogeneous, and more complex. This provides network managements and designs with larger challenges. How to use network big data to capture cellular network behavior and activity patterns and perform accurate predictions is recently one of main problems. To the end, firstly we exploit big data platform and technologies to analyze cellular network big data, i.e. Call Detail Records (CDRs). Our CDRs data set, which includes more than 1000 cellular towers, more than million lines of CDRs, and several million users and sustains for more than 100 days, is collected from a national cellular network. Secondly, we propose our methodology to analyze these big data. The data pre-handling and cleaning approach is proposed to obtain the valuable big data sets for our further studies. The feature extraction and call predictability methods are presented to capture base stations' behaviors and dissect their predictability. Thirdly, based on our method, we perform the detailed activity pattern analysis, including call distributions, cross correlation features, call behavior patterns, and daily activities. The detailed analysis approaches are also proposed to dig out base stations' activities. A series of findings are found and observed in the analysis process. Finally, a study case is proposed to validate the predictability of base stations' behaviors and activities. Our studies demonstrates that big data technologies can indeed be utilized to effectively capture network behaviors and predict network activities so that they can help perform highly effective network managements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.